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Abstract. Explicit expressions are derived for the macroscopic and the internal strain in the
crystals of the diamond structure with (001) surfaces subject to a stress applied from the sides
parallel to the (001) direction. The numerical predictions of the surface relaxation at the
ideal (001} surfaces of C, Si, Ge and -Sn crystals are given in terms of the valence force
constants already used for the description of the dynamics of the materials. The results are
compared with the existing experimental observations.

1. Introduction

A peculiarity of the diamond structure is that the sites occupied by the atoms are not
centrosymmetric so that the reaction of materials such as C, Si, Ge and a-5n to an
external homogeneous stress involves, apart from the usual macroscopicstrain, an inner
strain, which defines a mutual displacement of the constituent sublattices (Cousins
1978). The value of the inner strain has been measured in silicon (Segmiller 1963, 1964,
Segmiiller and Neyer 1965, d’ Amour et af 1982), in silicon and in germanium (Cousins
et al 1982a, b, 1987) and in diamond {Cousins et af 1989). It has been shown (Cousins er
af 1987) that, while a uniaxial compressive stress is applied in the (110) direction, the
inner strain near to the (001) surface significantly differs from the inner strain peculiar
to the bulk. The effect has been attributed to a discrepancy between the quotient of
Poisson’s ratio and ‘Young's modulus in the measured material and in the anvils used to
transmit the stress. Indeed, the discrepancy produces an additional lateral stress. There
exists, however, an intrinsic effect of this type which merely comes from the fact that
some interactions of the atomic planes are eliminated by the existence of the surface.

_ The phenomenon is particularly easily tractable within a force constant model
(Zabifiska and Zielidski 1989, Zielinski 1990) and with the use of the surface re-
sponse theory for discrete systems (Dobrzynski 1986) provided that the effective range
of the interactions is not too large. A structural refaxation near to the surfaces parallel
- to the axis of the applied stress is expected even if no relaxation is observed in the
unloaded material and no modification is introduced by the surface to the force constant
values. The only condition for this strain-induced relaxation to appear is that the
interactions between the atomic planes parallel to the surface of interest take in at
least the second-nearest neighbour, thus assuring a spatial dispersion. The technique
proposed by Zabiriska and Zielinski (1989) and Zielisiski (1990) seems to apply well to
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diamond, silicon, germanium and w-tin crystals because they show a spatial dispersion
but the effective interactions are limited to several nearest neighbours only.

Force constant models of the elastic and vibrational properties of the materials have
been reviewed by Cousins (1982). A valence force potential extended to the third-
nearest neighbours turned out to be satisfactory in the description of the phonon
frequencies throughout the whole Brillouin zone (McMurray et af 1967, Tubino et af
1972). Weber's (1977), bond charge model which included in a simple way the electronic
degrees of freedom, has confirmed the short-range character of the interactions in the
crystals discussed. Also the structure of the 2 X 1 reconstructed (001) surfaces of Si and
Ge (see, e.g., Grey et al 1988, Weisendanger ef a/ 1990) could have been modelled with
only several force constants (Appelbaum and Hamann 1978).

In more advanced ab initio (see, e.g., Nielsen and Martin 1985, Zandiehnadem 1990
and references therein) and semiempirical approaches (Chadi 1984, Craig and Smith
1984,1989, 1990, Mazur and Pollmann 1989, 1990) the force constants are obtained as the
respective derivatives of the lattice energy calculated by means of numerical methods.
Mazur and Pollmann (1990) have shown that it is enough to consider the force constants
to the sixth-nearest neighbours only so as to reproduce the bulk and the surface phonon
frequencies and the structure of the reconstructed Si(001) surface well. They have also
shown that the presence of the surface modifies the force constants in a surface layer
extended to eight first atomic planes.

In the present work the surface relaxation of the (001) surface of C, Si, Ge and a-Sn
induced by any uniaxial stress with its axis perpendicular to the (001) direction is
determined within the valence potential model of McMurry et al (1967) and Tubino et
al (1972). Explicit formulae are given 50 as to allow an interested reader to estimate
quickly the extent of the phenomenen as a function of phenomenoclogical parameters:
the bulk and surface force constants and an additional surface stress. This kind of
calculation offers one the possibility of assessing the expected relaxation of the surfaces
in the stressed material given the values of the force constants and, therefore, to extract
some additional effects such as the misfit in the elastic parameters of the sample and the
anvils. On the other hand, once the relaxation is known experimentally, the adequacy
of the force constant model can be checked.

The general expressions for the structure of a crystalline slab under a lateral stress
are given in section 2. These expressions are then related, in section 3, to the valence
force model of the diamond structure crystals given by Tubino et al (1972). The predicted
relaxation of two possible types of the ideal (001) surfaces of C, 8i, Ge and @-Sn under
a uniaxial stress with its axis lying in the (001) plane is given in section 4, Section 5
presents briefly the sources of possible discrepancies between the model calculations
and the resuits of the existing and future experiments.

2. Reaction of crystals with sarfaces to external stress

Consider a crystalline slab perpendicular to the z direction and consisting of L trans-
lationally equivalent layers. Every layer generally comprises a number X = 1 of atomic
planes. If each of the atomic planes contains atoms belonging exclusively to one single
sublattice, any external homogeneous strain will only cause mutual displacements of
the planes and some in-plane displacements of the atoms (Cousins 1978). It is then
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convenient to introduce the following variables to describe the state of such a crystal
under stress:

(D) = (x1(D), x3(D), x3(@), . . ., xF D), x5 (D), x§ (1))

where x{(I), x5 (/) and x%(!) are the x, y and z components of the mutual displacements
of the consecutive atomic planes

x5 =uf () —uf () forx=1,...,K—1
) =ul(+1) - uf()

while u¥ (f) is the ith component of the displacement of the ixth atomic plane in the /th
layer. The variables xf(/), { = 1, 2, 3, are discrete analogues of local strain components
£13, Em, €33, TESpectively.

The atomic planes themselves also undergo deformations, which can be described
by the following vector:

e(l) = (1)), &), &4, - . ., £F (D, 5 (D, £€ (1))

where £§(I), &5 (/) and £§ (!} are the components of the planar strain undergone by the
xth atomic plane in the /th layer. The Voigt notation is used:

ef () = e11()) e5() = £5(0) 5() = 225 (1).

If the slab is very large in the x and y directions and the external stress is applied through
perfectly rigid anvils, the atomic planes are all deformed in the same way, so that the
k- and I-dependences in the above strain components can be dropped. Under such
conditions and in the harmonic approximation the potential energy per unit area of the
slabis

E=1% (sT -Ced + 2 !il () -ng(he + ”,EL:I x'(H)-h(l, l')x(l')) (§))
where 4 is the thickness of the slab.
Cis a3 x 3 matnx of the elastic constants:
€11 C1z2 Ci
C=|cpp cp cCx
€6 Cx Ces

h(/, [) is a2 matrix of the interactions of the local strain components (see Zielinski (1950)
for the method of construction) and n(/) is a coupling matrix.

When an external stress o = (0, 03, 0;) is applied to the slab so that its axis is
perpendicular to the z direction, the state of the system is given by the following condition
for the minimum of energy:

L
E_ ced+ S n'(x()) = od @
dE I=1
L e + ZL‘, h(t, #)x(I') = s(0) (3)
ax(l) T AT '

Here s(I) is a stress tending to change the separations between the atomic planes. Its most
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natural source are non-compensated forces arising from the cleavage of the surfaces. In
most cases the surface stress vanishes beyond a narrow subsurface zone. Equation (3)
yields

L
x(f) = ,Z, g(l, 1) [s() — n("e] )
where g(/, I') is a Green function for a crystal with surfaces (Zielifiski 1988, 1990). The
expression for € arises from the insertion of equation (4) into equation (2):

L
Ced+ 2 97()a(l.)s() - n(l)e] = od. (5)
L=t

For sufficiently thick slabs it is reasonable to assume that the strain £ is close to that in
the bulk material and that s({), being zero except for a rather narrow range near the
surfaces, may be neglected. Then the strain ¢ is calculated from equation (5) with the
bulk Green function G(/, ') instead of the g{{, [') for the finite crystal and with the
l-independent bulk x instead of n({):

(c -7' 2 GO, t’)n) e=Cc=o0. (6)
F=—o

Substituting the strain £ from equation (6) into equation (4), one finally gets the

arrangement of the atomic planes in the slab under the stress:

L
x(l) = g: a(l, I)[s(") — n(I")C" o). (7)

3. Application to the valence force model

Valence potential models relate the lattice energy to variations in the bond lengths and
bond angles. The appropriate transformation allows one to express this energy in terms
of the variables of interest, i.e. € and x({) as defined in the previous section. In the case
of the (001) surface of the diamond structure crystals there are two translationally
inequivalent atomic planes so that K = 2. McMurry ¢t al (1967) and Tubino et af (1972)
have introduced the following valence force constants: K for the bond stretching Fp for
the tnteractions of the stretchings of the bonds having a common apex, H, for the
bending of the angles between bonds of common apex, Fg, for the interaction of the
angles with the stretching of the adjacent bonds, F,- for the interaction of two angles
having one apex and one bond in common and F,~ for the interactions of coplanar angles
whose apexes are separated by a bond common to both angles. Here, all the force
constants are in units of energy per square ingstrém. Below the coefficients C, n(/) and
h(l, I") of equation (1) are given in terms of the valence force constants:

C“/az =C22/a2 ='112KR +%FR + lf'HA - ""f' F'.\- + aéF}\”'
¢i2fa® = cpfa® = 2Kg +4Fg — 3HA + ¥ Fp — ' Fpr
Cop/a? = ¥sKp — $Fp + (8/3V6)F gy + §H, + & Fyn

Cle = Cgy = Cg6 = Cgz = 0.

(8

a is the cubic lattice parameter. Since in the cubic crystaliographic system ¢j; = ¢j3 = ¢
and ¢y = 44 = Cs5, the above list exhausts all the different elastic constants.
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1t follows from the symmetry of the diamond structure that the strain components
£, £, and &, are only coupled to x}(/) and x3(!). The non-zero coupling parameters can
be, therefore, groupedina 2 X 3 matrix 5 whose elements 7, =1,2,f=1,2,6, in the
bulk (far from the surfaces) are / independent and read

Nnja=3Kg + FR— B Hy + % Fy — % F-
Nig/a= —4Kp + §Fg + (8/3V6)Fps + % H, + % Fyu ©9)
Niz =N = N2 =N Nas = —Nis

The relationship 1, = — 14 means that under a shear g the distances x1(!) and x3({) are
changed so that x}(/} = —x%(!), which corresponds to a pure inner strain in Cousins’
(1978) theory.

Owing to the high symmetry of the (001) direction the lateral displacements
xi(D), x3(D), x}(!) and x3(/) are decoupled from x (/) and x3({). Since only the latter are
affected by the appliedstraing,,i = 1,2, 6, itisenough toconsidera2 X 2matrix h(/, I'):

B,y =hp(, 1) =8Kg + 4 Fp — (64/3V6)Fpn + 2H, — BEF,. + 64F

B, ) =hay (LD =hyp(Li=1) = hy(l, I+ 1) (10)
=4Fp + (32/3V6)Fra + Y Hp — % Fp + % Fyo

hu(h I+ 1) =hy(, 1= 1) = hp(l, I+ 1) = Ap(l, ] — 1) = % Fj.

All the other elements ;(J, I') vanish.

The force constants in equations (8)—(10) should all be given in units of energy per
square Angstrém. Consequently, the parameters Fg,, H,, Fa and Fav of Tubino et al
(1972) have to be replaced by Fry/a, H,/a%, Fy./a® and F,./a?, respectively.

Since the diamond structure comprises two inequivalent alomic layers perpendicular
to the z direction, there exist two different ways of cleaving the ideal (001) surface. The
topmost atomic layer may then be located either at z = 0 or at z =  with respect to the
origin of the unit cell. (Both kinds of surface are related with one another through a
7/2 rotation about the z axis.) Correspondingly, given the external stress o we shall
consider the relaxation of the surface of the first kind as the succession
x3(1), x3(1), x3(2), x3(2), . . . and the relaxation of the surface of the second kind as
x3(1), x3(2), x3(2), x1(3), . . .. An analogous distinction of the two kinds of surface can
be made at the other periphery of the slab, i.e. for { close to L.

The presence of the surfaces results in a modification of the élements of the energy
matrix h{/, /') (see equation (1)) for / and 7’ close either to unity or to Z compared with
the bulk values of these elements given in equation (10). In the present calculations the
surfaces are treated as ideal in the sense that their existence only eliminates some force
constants, whereas all the remaining force constants preserve their values peculiar to
the bulk. The rule of elimination applied here is the following: whenever a bond is
crossed by the surface plane (assumed to be infinitesimally shifted outwards with respect
to the topmost atomic plane), all the contributions to the lattice energy are dropped if
they involve a variation in the length of this bond or a variation in an angle that the bond
is aside of. The rule can be immediately expressed in terms of the valence variables, i.e.
the bond lengths and bond angles. After the transformation to the variables of interest
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x}(1), x3({) and £; one finds that in the case of the first kind of surface at{ = 1the elements
of the cleavage operator given by

Vi(1,1) = —[(32/3V6)Fga + % Hy — % Fy + % Fp]
V%Z(la 1) = Vél(l’ 1) = _35. FA”'

have to be added to the respective elements ky)(1, 1), A15(1, 1) and Ay(1, 1) implied by
equation (10).
Similarly, for the second kind of surface at / = 1 the cleavage operator reads
Vi(1, 1) = —hy (1) VR(L, D) =V4(1. 1) = —hp( D)
VR(LD=Vh(,1)  VA(1,2)=VhQ2,1) = Vh(, 1),

One should note that the above cleavage operators (equations (11) and (12)) do not
follow the definition of the cleavage operator appropriate to the Born and von Karman
force constant model (Zielifiski 1988).

The matrix n(!) also differs from that given in equation (9) when / is close to unity.
Correspondingly, for the first kind of surface one has

nh() =nkh() =0y — Fr — (4/3VE)Fgs + 8H, — ¥ Fp + §Fp
ns(1) = 16 — 1Fr (13)
(1) = nh(1) = 1y + §Fs-

The remaining elements #,({) are equal to n; of equation (9) . For the second kind of
surface

(11)

(12)

ni(1) =0 forj=1,2,6
13 (1) = n%(1) = nk (1) n36(1) = 126 + 4Fz (14)

111(2) = 11(2) = nyy + £ Fae.

The cleavage operators V(/, /') and the coupling matrices 5(!) at the other surface
of the slab can be easily obtained from equations (11)-(14) by the appropriate replace-
ment of indices.

4. Sorface relaxation

The form of the bulk energy matrix (equation (10)) allows one to express the bulk static
Green function G4(/, ') directly by the elements of the Green function G%m, m’) for

a system of identical atomic planes with interactions extended to the third-nearest
neighbours (Zielifski 1988):

Gu,IN=GCG"Ql+a-2,20+8-2)
where
GoUm, m’) = (1/ha(1, ) [~ 2 (21 = 1) (21 ~ 25) (21 =~ 23%)
+z2rm I f(22 — 1) (25 — 2:)(z2 — 27Y)) (15)

The quantities z, i = 1,2, |z, < 1, which either are both real or have z, = z}, define the
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Table I. Parameters z, and z; of the bulk Green function (equation (15)) for C, 8i, Ge and

a-Sn crystals.

Re(z) Im(zy) Re(z,) Im(zz)
C -0.140 0 =0.072 0
Si -~0.068 0.074 —0.068 -0.074
Ge ~-0.073 0.082 -0.073 —0.082
a-Sn ~0.104 0.017 -0.104 -0.017

spatial behaviour of the deformation caused to the crystal by a body force applied to
atomic plane m. The specific expression for z; and z, in terms of the elements of the
energy matrix h{/, /') has been given by Zielinski (1988). Table 1 shows the values of z,
and z, for the crystals C, 8i, Ge and a-Sn. The negative values of Re(z;) and Re(z,)
mean that the asymptotic relaxation in all the considered crystals has an alternating
character (Allan and Lannoo 1988). The wave of the alternation is incommensurate with
the lattice in 8i, Ge and @-Sn, the wavenumber being equal to arg(z,).

The rate of the spatial relaxation of the deformation is determined by the greatest
modulus (z;]. In the present model, |z;| = 0.1 except for diamond where |z,] = 0.140.
Thus, the diamond crystal shows the slowest spatial relaxation,

Using the bulk Green function (equation (15)) and the cleavage operators for both
kinds of surface (equations (11) and (12)}, one can obtain the corresponding Green
functions g(/, I') for the crystal with surface (see Dobrzynski (1986) and Zielifiski (1990)
for details of the calculation). The limited spatial range of the cleavage operators
(equations (11) and (12)) and the relatively small values of | z;| indicate that the surface
relaxation will extend to several subsurface atomic layers only. That is why, when
considering the surface relaxation under a stress o (equation (7)), one can put L — «
even for fairly thin slabs.

The reaction of the ideal (001) surfaces of the crystals C, 8i, Ge and o-Sn to a lateral
uniaxial stress is shown in figures 1, 2, 3 and 4, respectively. The quality ‘ideal’ means
here that no variation has been introduced into the force constants near the surfaces
apart from those implied by equation (11)-(14). Further, no surface stress s(/) has been
taken into account. The angle between the axis of the external stress with the (100)
crystallographic direction has been denoted by . (In the experiments of Cousins et al
(1982a,b, 1987, 1989), ¢ = 7/4.) The full curves with crosses and the full curves in
figures 1-4 show the changes in the first and the second interlayer spacings, respectively,
compared with the corresponding changes in the bulk crystal indicated by the chain
curves and broken curves, respectively. The value of the external compressive stress has
been set at 1 GPa for all angles.

5. Discussion

Surface relaxation under a lateral stress has been observed by Cousins et @l (1987) in
silicon and germanium as an artefact in a measurement of the bulk internal strain. The
latter quantity is proportional to x*({) — x*(I). According to Cousins et af (1987) the
relative difference between the internal strain near the surface and that in the bulk is
about 30%. However, to the present author’s knowledge there are no experiments
specifically aimed at the study of the surfaces under such a stress. In the present
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under a uniaxial stress of I GPa with its axis making an angle @ with the direction (100). The
corresponding variations in the interlayer distances () (— - —) and x (1} (- - -) in the bulk

are also shown.
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calculations based on the force constant model of Tubino et al (1972) the relative
difference of the surface and the bulk internal strain slightly exceeds about 109 for Si
and Ge and is about 60% in the case of the surface of type 1 in diamond. In all cases,
however, the effect quickly diminishes with increasing depth into the crystal owing to
small values of | z;|, whereas the effect observed by Cousins et 2/ must have taken in more

atomic planes so that it is perceivable in a diffraction experiment.
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The reasons for possible discrepancies between the present calculations and exper-
imental results are, apart from those raised by Cousins ez af (1987), the following. Firstly,
evenwell prepared (001) surfaces of diamond structure are stepped (see, e.g., Kawamura
et al 1988, Weisendanger ef al 1990} so that there exists a surface zone where the
‘topmost atomiclayer’ lies at different levels. Secondly, the surfaces considered are2 x 1
reconstructed, which may cause a variation in the surface force constants. Finally, even
though the surfaces were perfectly flat, the force constant model, which accounts for
bulk dynamical properties well, may be inadequate close to the surface. In particular
the polarization of the bonds near to the surface may influence not only the value but
also the spatial extent of the parameters of the harmonic interactions (Mazur and
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Pollmann 1989). The results given in section 4 should, therefore, be treated as a starting
point in a generalization of the model of Tubino ef af (1972) to systems with surfaces, It
seems that experiments aimed at the study of the influence of the lateral stress on the
structure of surfaces will soon provide indications on how such an improvement can be
achieved.
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