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Abstract. Explicit expressions are derived for the macroscopic and the internal strain in the 
crystalsofthediamondstruchlre with (0Ol)surfacessubjeci toastresapplied from the sides 
parallel to the (001) direction. The numerical predictions of the surface relaxation at the 
ideal (001) surfaces of C, Si, Ge and a-Sn crystals are given in tenus of the valence force 
constants already used for the description of the dynamics of the materials. The results are 
compared with the existing experimental observations. 

1. Introduction 

A peculiarity of the diamond structure is that the sites occupied by the atoms are not 
centrosymmetric so that the reaction of materials such as C, Si, Ge and e-Sn to an 
external homogeneous stress involves, apart from the usual macroscopic strain, an inner 
strain, which defines a mutual displacement of the constituent suhlattices (Cousins 
1978). The value of the inner strain has been measured in silicon (Segmiiller 1963,1964, 
Segmiiller and Neyer 1965, d’Amour eta1 1982), in silicon and in germanium (Cousins 
etal1982a, b, 1987) and in diamond (Cousins et a1 1989). It has been shown (Cousins et 
al1987) that, while a uniaxial compressive stress is applied in the (110) direction, the 
inner strain near to the (001) surface significantly differs from the inner strain peculiar 
to the bulk. The effect has been attributed to a discrepancy between the quotient of 
Poisson’s ratio and Young’s modulus in the measured material and in the anvils used to 
transmit the stress. Indeed, the discrepancy produces an additional lateral stress. There 
exists, however, an intrinsic effect of this type which merely comes from the fact that 
some interactions of the atomic planes are eliminated by the existence of the surface. 

The phenomenon is particularly easily tractable within a force constant model 
(Zabinska and Zielinski 1989, Zielinski 1990) and with the use of the surface re- 
sponse theory for discrete systems (Dobrzynski 1986) provided that the effective range 
of the interactions is not too large. A structural relaxation near to the surfaces parallel 
to the axis of the applied stress is expected even if no relaxation is observed in the 
unloaded material and no modification is introduced by the surface to the force constant 
values. The only condition for this strain-induced relaxation to appear is that the 
interactions between the atomic planes parallel to the surface of interest take in at 
least the second-nearest neighbour, thus assuring a spatial dispersion. The technique 
proposed by Zabinska and Zielinski (1989) and Zieliriski (1990) seems to apply well to 
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diamond, silicon, germanium and a-tin crystals because they show a spatial dispersion 
but the effective interactions are limited to several nearest neighbours only. 

Force constant modelsof the elastic and vibrational properties of the materials have 
been reviewed by Cousins (1982). A valence force potential extended to the third- 
nearest neighbours turned out to be satisfactory in the description of the phonon 
frequencies throughout the whole Brillouin zone (McMurray et a1 1967, Tubino et a1 
1972). Weber's (1977), bond charge model which included in asimple way the electronic 
degrees of freedom, has confirmed the short-range character of the interactions in the 
crystals discussed. Also the structure of the 2 x 1 reconstructed (001) surfaces of Si and 
Ge (see, e.g., Grey etal 1988, Weisendanger el a1 1990) could have been modelled with 
only several force constants (Appelbaum and Hamann 1978). 

In moreadvancedabinitio (see, e.g., Nielsenand Martin 1985, Zandiehnadem 1990 
and references therein) and semiempirical approaches (Chadi 1984, Craig and Smith 
1984,1989,1990, MazurandPollmann 1989,1990) theforceconstantsareobtainedas the 
respective derivatives of the lattice energy calculated by means of numerical methods. 
Mazur and Pollmann (1990) have shown that it is enough to consider the force constants 
to the sixth-nearest neighbours only so as to reproduce the bulk and the surface phonon 
frequencies and the structure of the reconstructed Si(OO1) surface well. They have also 
shown that the presence of the surface modifies the force constants in a surface layer 
extended to eight first atomic planes. 

In the present work the surface relaxation of the (001) surface of C, Si, Ge and a-Sn 
induced by any uniaxial stress with its axis perpendicular to the (001) direction is 
determined within the valence potential model of McMurry et al(1967) and Tubino er 
al(1972). Explicit formulae are given so as to allow an interested reader to estimate 
quickly the extent of the phenomenon as a function of phenomenological parameters: 
the bulk and surface force constants and an additional surface stress. This kind of 
calculation offers one the possibility of assessing the expected relaxation of the surfaces 
in the stressed material given the values of the force constants and, therefore, to extract 
some additional effects such as the misfit in the elastic parametersof the sample and the 
anvils. On the other hand, once the relaxation is known experimentally, the adequacy 
of the force constant model can be checked. 

The general expressions for the structure of a crystalline slab under a lateral stress 
are given in section 2. These expressions are then related, in section 3, to the valence 
force model ofthe diamondstmcturecrystalsgiven byTubino etal (1972). The predicted 
relaxation of two possible types of the ideal (001) surfaces of C, Si, Ge and a-Sn under 
a uniaxial stress with its axis lying in the (001) plane is given in section 4. Section 5 
presents briefly the sources of possible discrepancies between the model calculations 
and the results of the existing and future experiments. 

2. Reaction of crystals with surfaces to external stress 

Consider a crystalline slab perpendicular to the I direction and consisting of L trans- 
lationally equivalent layers. Every layer generally comprises a number K > 1 of atomic 
planes. If each of the atomic planes contains atoms belonging exclusively to one single 
sublattice, any external homogeneous strain will only cause mutual displacements of 
the planes and some in-plane displacements of the atoms (Cousins 1978). It is then 
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convenient to introduce the following variables to describe the state of such a crystal 
under stress: 

40 = ( x ~ ( ~ ) ~ ~ ; ( o , ~ m ~ ~  . , x f ( I ) , x ~ ( 9 > x ~ ( o )  

wherexf(l),x$(l) andxf(l) are thex,yandz componentsofthe mutualdisplacements 
of the consecutive atomic planes 

x:(r) = Uf"(l) - U l ( l )  fOrK= 1 , .  . . , I < -  1 

xf(l) = u ! ( l +  1) - u f ( l )  

while uf(l) is the ith component of the displacement of the rcth atomic plane in the lth 
layer. The variables x;(l), i = 1,2,3, are discrete analogues of local strain components 
E ~ ~ ,  E ~ ~ ,  respectively. 

The atomic planes themselves also undergo deformations, which can be described 
by the following vector: 

E ( l )  = ( E : ( [ ) ,  E!(l)), E i ( l ) ,  . . ., E f ( I ) ,  E f ( l ) ,  Ea([)) 

where ef(l), &$(I) and E: ( [ )  are the components of the planar strain undergone by the 
Kth atomic plane in the Ith layer. The Voigt notation is used: 

E:([) = EfI(I) & ; ( I )  = .%(I) & : ( I )  = 2&1,(l) 

If the slab is very large in the x and y directions and the external stress is applied through 
perfectly rigid anvils, the atomic planes are all deformed in the same way, so that the 
K- and I-dependences in the above strain components can be dropped. Under such 
conditions and in the harmonic approximation the potential energy per unit area of the 
slab is 

L L 

sT. CEd + 2 xT(l) . q ( l ) ~  + x'(f) . h(l, l')x(I') 
f = 1  1.1'=1 

where d is the thickness of the slab. 
C is a 3 X 3 matrix of the elastic constants: f : :  c12 cu c16 % I .  

c16 c26 

h(I ,  I) is a matrix of the interactions of the local strain components (see Zielihski (1990) 
for the method of construction) and q(l) is a coupling matrix. 

When an external stress U = (U1, uz, u6) is applied to the slab so that its axis is 
perpendicularto therdirection, thestateofthesystemisgivenby the following condition 
for the minimum of energy: 

L 

= Ced + 
as !=I 

qT(I)x(l) = u d  

L 
-- - ~ ( I ) E  + 2 h(l, f')x(I') = s([). 
Wl) I'=l 

a E  

Heres([) isastresstendingtochangetheseparationsbetween theatomicplanes. Itsmost 
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natural source are non-compensated forces arising from the cleavage of the surfaces. In 
most cases the surface stress vanishes beyond a narrow subsurface zone. Equation (3) 
yields 

L 

x(I) = 2 e(l, l') [SV')  - *(If)€] (4) 
I '=l  

where g ( l ,  l ' )  is a Green function for a crystal with surfaces (Zieliriski 1988,1990). The 
expression for E arises from the insertion of equation (4) into equation (2): 

L 

Ced + 2 qT(l) g(I,  f ' ) [ s ( l ' )  - q ( l ' ) ~ ]  = ad. (5) 
1.1'=1 

For sufficiently thick slabs it is reasonable to assume that the strain E is close to that in 
the bulk material and that s(l) ,  being zero except for a rather narrow range near the 
surfaces, may be neglected. Then the strain E is calculated from equation (5) with the 
bulk Green function G(I, l') instead of the g(I ,  1') for the finite crystal and with the 
I-independent bulk q instead of q(1): 

- qT G(0,P)q 

Substituting the strain E from equation (6)  into equation (4). one finally gets the 
arrangement of the atomic planes in the slab under the stress: 

L 
x ( l )  = c g(I ,  l')[s(l') - q(!')C-Iu]. 

P = I  
(7) 

3. Application to the valence force model 

Valence potential models relate the lattice energy to variations in the bond lengths and 
bond angles. The appropriate transformation allows one to express this energy in terms 
of the variables of interest, i.e. E and x ( I )  as defined in the previous section. In the case 
of the (001) surface of the diamond structure crystals there are two translationally 
inequivalent atomic planes so that K = 2. McMurry er al(1967) and Tubino et al (1972) 
have introduced the following valence force constants: KR for the bond stretching FR for 
the interactions of the stretchings of the bonds having a common apex, H A  for the 
bending of the angles between bonds of common apex, FRh for the interaction of the 
angles with the stretching of the adjacent bonds, FA- for the interaction of two angles 
having one apex and one bond in common and FA- for the interactions of coplanar angles 
whose apexes are separated by a bond common to both angles. Here, all the force 
constants are in units of energy per square ingstrom. Below the coefficients C, q(1) and 
h(/, 1') of equation (1) are given in terms of the valence force constants: 

c l l / a 2  = c22/a2 = ~ K R  + ~ F R  -!- 9 H A  - 9 FA, i P FA- 
c12/a2  = c21/az = h K R  -!- l F R  - 8HA + 9 FA, - 9 FA- 

cb6/a2 = &KR - ~ F R  i (8/3fi)FRA i % H A  + F FA* (8) 

C l 6  = Cbl = C26 = c a  = 0. 
a is the cubic lattice parameter. Since in the cubic crystallographic system cl2 = cI3 = c, 
and c& = c, = cs5, the above list exhausts all the different elastic constants. 
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It follows from the symmetry of the diamond structure that the strain components 
E ~ ,  E2and E~ are only coupled to x i ( [ )  and x@). The non-zero coupling parameters can 
be, therefore, grouped in a 2 X 3 matrix VJ whose elements q,,, i = 1,2, j = 1 , 2 , 6 ,  in the 
bulk (far from the surfaces) are I independent and read 

l l l l /a  = ~ K R  + FR - 9 H A  + 9 FA, - ?8 F p  

q16/a = -&KR + $FR + ( 8 / 3 f i ) F R A  + 9 H A  + % Fh.' (9) 

1112 = 1121 = 1122 = 711 7 2 6  = -1116, 

The relationshipqz6 = -q16means that underashearE6the distances x : ( l )  andx$(l) are 
changed so that x $ ( l )  = -xz ( l ) ,  which corresponds to a pure inner strain in Cousins' 
(1978) theory. 

Owing to the high symmetry of the (001) direction the lateral displacements 
x ~ ( l ) , x ~ ( l ) , x ~ ( l )  andx:(I) are decoupledfromx:(f) andx:(l). Sinceonly thelatter are 
a!Tectedbytheappliedstrain~,,i = 1,2,6,itisenoughtoconsidera2 x 2matrixh(l, l '):  

hll(1, [) h,([,  1) = EKR + 5 FR - ( 6 4 / 3 f i ) F ~ , \  + Y H A  - Y F x  + 64Fx- 

~ l z ~ ~ , I ) = ~ z l ~ ~ , l ) = h , Z ( ~ , ~ -  l )=hz , ( l , l+  1) (10) 

~ F R  + ( 3 2 / 3 f i ) F ~ ~  + 9 HA - 9 F c  + 9 FA- 

h l 1 ( i , i + i ) = h l l ( r , i -  i ) = h , ( ~ , i + i ) = h Z Z ( ~ , ~ - i ) =  YF*-. 

All the other elements he(/ ,  l ' )  vanish. 
The force constants in equations @)-(lo) should all be given in units of energy per 

square hgstrdm. Consequently, the parameters FRA, HA,  FA- and F,,- of Tubino et al 
(1972) have to be replaced by FRA/a, HJaz ,  FN/az  and FAm/a2, respectively. 

Since the diamond structure comprises two inequivalent atomic layers perpendicular 
to the z direction, there exist two different ways of cleaving the ideal (001) surface. The 
topmost atomic layer may then be located either at L = 0 or at z = f with respect to the 
origin of the unit cell. (Both kinds of surface are related with one another through a 
n/2 rotation about the z axis.) Correspondingly, given the external stress U we shall 
consider the relaxation of the surface of the first kind as the succession 
x : ( l ) ,  x:(1),.4(2),~$(2), . . . and the relaxation of the surface of the second kind as 
x ; ( l ) , x : ( 2 ) ,  x : (Z) ,x: (3) ,  . . .. Ananalogousdistinctionofthetwo kindsofsurfacecan 
be made at the other periphery of the slab, i.e. for lclose to L. 

The presence of the surfaces results in a modification of the elements of the energy 
matrix h(1, P )  (see equation (I)) for 1 and i' close either to unity or to L compared with 
the bulk values of these elements given in equation (10). In the present calculations the 
surfaces are treated as ideal in the sense that their existence only eliminates some force 
constants, whereas all the remaining force constants preserve their values peculiar to 
the bulk. The rule of elimination applied here is the following: whenever a bond is 
crossed by the surface plane (assumed to be infinitesimally shifted outwards with respect 
to the topmost atomic plane), all the contributions to the lattice energy are dropped if 
they involve a variation in the length of this bond or a variation in an angle that the bond 
is a side of. The rule can be immediately expressed in terms of the valence variables, i.e. 
the bond lengths and bond angles. After the transformation to the variables of interest 
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x~(l),x~(l)and~~onefindsthatinthecaseofthefirstkindofsurfaceati = ltheelements 
of the cleavage operator given by 

VfI(1 , l )  = - [ ( 3 2 / 3 ' & ) F ~ ~  + 9 H A  - 9 ~ k A t  

V t ( 1 , l )  = VjI(1,l)  = -%FA- 
FAM] 

(11) 

have to be added to the respective elements hli(l, l), hiz(l, 1) and h ~ ~ ( 1 , l )  implied by 
equation (IO). 

Similarly, for the second kind of surface at 1 = 1 the cleavage operator reads 

(12) 
V?I(l. 1) = -h,,([, 1 )  

Wl, 1) = V11(1.1) 

v m  1) = % ( l ,  1) = -h12(1,4 

q i ( 1 ,  2) = Vz&, 1) = Vi&, 1). 

One should note that the above cleavage operators (equations (11) and (12)) do not 
follow the definition of the cleavage operator appropriate to the Born and von Karman 
force constant model (Zieliriski 1988). 

The matrix ~ ( 1 )  also differs from that given in equation (9) when 1 is close to unity. 
Correspondingly, for the first kind of surface one has 

1111(1) = qh(1)  = 1 1 1 1  - f F R  - (4/3*)FRA f  HA - 9 FA* +SF*" 
qk5cl) = V I 6  - f F R  (13) 

11:1(1) = qh(1) = 1111 + 
The remaining elements q4(1) are equal to qd of equation (9). For the second kind of 
surface 

Vt(1) = 0 for i=  1,2,6 

11:1(1) = ?%(I) = d l ( 1 )  = 726 + PR (14) 

qL(2) = ~ h ( 2 )  = '111 + ~ F A w .  

The cleavage operators V([, l') and the coupling matrices q([) at the other surface 
of the slab can be easily obtained from equations (11)-(14) by the appropriate replace- 
ment of indices. 

4. Surface relaxation 

The form of the bulk energy matrix (equation (10)) allowsone toexpress the bulkstatic 
Green function G,#(l, 1') directly by the elementsof the Green function Go(m, m') for 
a system of identical atomic planes with interactions extended to the third-nearest 
neighbours (Zielihski 1988): 

G,(l, 1 ' )  = G0(21 + (Y - 2, 21' + p - 2) 

where 

Ga(m,m')  = (l /hL2(l,  ~ ) ) [ Z \ ~ - " ' I ~ ~ / ( Z :  - l ) (z l  - z2)(zl - 2;') 

/(zf - I)(zz - Z I ) ( ~ Z  - zi')l. (15) + Z\m-m'1t2 

Thequantitiesz,,i= l,Z,Iz,[ < 1,whicheitherarebothrealorhave z 1  = zf,definethe 
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Table 1. Parameters zI and z 2  of the bulk Green function (equation (15)) for C, Si, Ge and 
e-Sn crystals. 

C -0.140 0 -0.072 0 
Si -0.068 0.074 -0.068 -0.074 
Ge -0.073 0.082 -0.073 -0.082 
e& -0.104 0.017 -0.104 -0.017 

spatial behaviour of the deformation caused to the crystal by a body force applied to 
atomic plane m. The specific expression for zI and zz in terms of the elements of the 
energy matrix h(l, 1') has been given by Zielinski (1988). Table 1 shows the values of 2 ,  

and z2 for the crystals C, Si, Ge and a-Sn. The negative values of Re(z,) and Re(z,) 
mean that the asymptotic relaxation in all the considered crystals has an alternating 
character (Allan and Lannoo 1988). The wave of the alternation is incommensurate with 
the lattice in Si, Ge and a&, the wavenumber being equal to arg(z,). 

The rate of the spatial relaxation of the deformation is determined by the greatest 
modulus (zi(. In the present model, (zi( = 0.1 except for diamond where (z,) = 0.140. 
Thus, the diamond crystal shows the slowest spatial relaxation. 

Using the bulk Green function (equation (15)) and the cleavage operators for both 
kinds of surface (equations (11) and (12)), one can obtain the corresponding Green 
functions g(I ,  1 ' )  for the crystal with surface (see Dobrzynski (1986) and Zieliriski (1990) 
for details of the calculation). The limited spatial range of the cleavage operators 
(equations (11) and (12)) and the relatively small values of lzil indicate that the surface 
relaxation will extend to several subsurface atomic layers only. That is why, when 
considering the surface relaxation under a stress U (equation (7)), one can put L+ m 
even for fairly thin slabs. 

The reaction of the ideal (001) surfaces of the crystals C, Si, Ge and a-Sn to a lateral 
uniaxial stress is shown in figures 1,2, 3 and 4, respectively. The quality 'ideal' means 
here that no variation has been introduced into the force constants near the surfaces 
apart from thoseimplied by equation (11)-(14). Further, no surface stresss(I) has been 
taken into account. The angle between the axis of the external stress with the (100) 
crystallographic direction has been denoted by p. (In the experiments of Cousins et a1 
(1982a,b, 1987, 1989), 9, = 7r/4.) The full curves with crosses and the full curves in 
figures 1 4  show the changes in the first and the second interlayer spacings, respectively, 
compared with the corresponding changes in the bulk crystal indicated by the chain 
curves and broken curves, respectively. The value of the external compressive stress has 
been set at 1 GPa for all angles. 

5. Discussion 

Surface relaxation under a lateral stress has been observed by Cousins et ul (1987) in 
silicon and germanium as an artefact in a measurement of the bulk internal strain. The 
latter quantity is proportional to rz(I) - x' ( l ) .  According to Cousins et a1 (1987) the 
relative difference between the internal strain near the surface and that in the bulk is 
about 30%. However, to the present author's knowledge there are no experiments 
specifically aimed at the study of the surfaces under such a stress. In the present 
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Fgur~I.(o)Vanaiionsinthefirrtx'(l) (- .-)andrecondr'(l)(-) inierlayer distances 
atrhe(001)rurfacrofrype 1 ~ndiamondunder3uniauaIsrressof 1 GPauithitsaxirmaking 
an anglc q with rhc direcrion (100) Theconcspondingvariationsin !he Interlayer dirrances 

X I ( / )  (-. -) and x : ( / )  (---) m the bulk are also shoun. ( b )  Variations in rhe Rrrt  xz(l)  
(- .-)andsemndx'(?)(-)interlayer distancnat the(001)rurf~ceoftvpe2in diamond 
undera uniaxialrtressof I GPauithirsawirmaking3nangle qwith ihedirect!on (100). The 
concspondinqvariarionsintheinlerlaycr dis!ancesx'(/)(-~ -)mdx'(l)(---)inthc bulk 
arc also shown. 

ZO 

6.0 6.0 

50 

4.0 

3.0 3.0 

2.0 

1.0 

X ( / )  

~~ 

0 7r/4 TI2 0 T/7 ~. - 
'p 'p 

Figure 2. Same as for figure 1 but for the (001) surface of Si. 

calculations based on the force constant model of Tubino et a/ (1972) the relative 
difference of the surface and the bulk internal strain slightly exceeds about 10% for Si 
and Ge and is about 60% in the case of the surface of type 1 in diamond. In all cases, 
however, the effect quickly diminishes with increasing depth into the crystal owing to 
smallvaluesof Izil, whereas the effect observed by Cousinsetdmust have takenin more 
atomic planes so that it is perceivable in a diffraction experiment. 
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Figure 3. Same as for figure 1 but for the (001) surface of Ge. 
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'p 

Figure 4. Same as for figure 1 but for the (001) surface of a'& 

The reasons for possible discrepancies between the present calculations and exper- 
imental results are, apart from those raised by Cousins eta1(1987), the following. Firstly, 
even well prepared (001) surfacesof diamondstructure are stepped (see, e.g., Kawamura 
a al 1988, Weisendanger et af 1990) so that there exists B surface zone where the 
'topmost atomiclayer'liesat different levels. Secondly, thesurfacesconsideredare2 x 1 
reconstructed, which may cause a variation in the surface force constants. Finally, even 
though the surfaces were perfectly flat, the force constant model, which accounts for 
bulk dynamical properties well, may be inadequate close to the surface. In particular 
the polarization of the bonds near to the surface may influence not only the value but 
also the spatial extent of the parameters of the harmonic interactions (Mazur and 
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Pollmann 1989). The results given in section 4 should, therefore, be treated as a starting 
point io a generalization of the model of Tubino et ai (1972) to systems with surfaces. It 
seems that experiments aimed at the study of the influence of the lateral stress on the 
structure of surfaces will soon provide indications on how such an improvement can be 
achieved. 
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